PostgreSQL is an open-source, object-relational database management system (ORDBMS) available for all major platforms including Linux, UNIX, Windows and OS X. Please mention your exact version of Postgres when asking questions. Questions concerning administration or advanced features are best directed to

- Wiki
10 articles, 2 books. Go to books ↓

Search has became an important feature and we've seen a big increase in the popularity of tools like elasticsearch and SOLR which are both based on lucene. They are great tools but before going down the road of Weapons of Mass Search, maybe what you need is something a bit lighter which is simply good enough!

JSON support is the most interesting new Postgres feature of the last few years. It relaxes the primary constraint of SQL databases — the rigid schema structure — by letting you store semistructured data in your tables alongside other data. It also decisively counters the NoSQL trend by giving users document store-like semantics in a proven, mature database technology.

Schemaless storage engines promise to make your life easier by removing the need to worry about a schema. In reality these systems simply make it your own responsibility to ensure data consistency.

How do you search for a value quickly? Create an index. What do you have to remember to do when joining two tables together? Create an index. How do you speed up a SQL statement that’s beginning to run slowly? Create an index. But what are indexes, exactly? And how do they speed up our database searches?

The most powerful tool at our disposal for understanding and optimizing SQL queries is EXPLAIN ANALYZE, which is a Postgres command that accepts a statement such as SELECT ..., UPDATE ..., or DELETE ..., executes the statement, and instead of returning the data provides a query plan detailing what approach the planner took to executing the statement provided.

A good first step in diagnosing performance problems is simply looking at the database from the outside.

You can do jobs, queues, real time change feeds, time series, object store, document store, full text search with PostgreSQL. How to, pros/cons, rough performance and complexity levels are all discussed. Many sources and relevant documentation is linked to.

A dive into the mechanics that allow Postgres to provide strong atomic guarantees despite the chaotic entropy of production.

It’s a story no one wants to encounter: Your primary key column runs out of values and your database starts exploding.

In this post I will walk you through the steps needed to create a simple microservice using ASP.NET Core with a data access that uses Marten to save and retrieve information from a PostgreSQL.